Ricci curvature and the manifold learning problem
نویسندگان
چکیده
منابع مشابه
Coarse Ricci curvature and the manifold learning problem
Abstract. We consider the framework used by Bakry and Emery in their work on logarithmic Sobolev inequalities to define a notion of coarse Ricci curvature on smooth metric measure spaces alternative to the notion proposed by Y. Ollivier. We discuss applications of our construction to the manifold learning problem, specifically to the statistical problem of estimating the Ricci curvature of a su...
متن کاملCoarse Ricci Curvature with Applications to Manifold Learning
Consider a sample of n points taken i.i.d from a submanifold of Euclidean space. This defines a metric measure space. We show that there is an explicit set of scales tn → 0 such that a coarse Ricci curvature at scale tn on this metric measure space converges almost surely to the coarse Ricci curvature of the underlying manifold.
متن کاملCurvature-aware Manifold Learning
Traditional manifold learning algorithms assumed that the embedded manifold is globally or locally isometric to Euclidean space. Under this assumption, they divided manifold into a set of overlapping local patches which are locally isometric to linear subsets of Euclidean space. By analyzing the global or local isometry assumptions it can be shown that the learnt manifold is a flat manifold wit...
متن کاملEvolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملA Curvature-based Manifold Learning Algorithm
Manifold learning aims to find a low dimensional parameterization for data sets which lie on nonlinear manifolds in a high-dimensional space. Applications of manifold learning include face recognition, image retrieval, machine learning, classification, visualization, and so on. By studying the existing manifold learning algorithms and geometric properties of local tangent space of a manifold, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2019
ISSN: 0001-8708
DOI: 10.1016/j.aim.2018.11.001